20

M.Tech. 2nd Semester Mechanical Engg. (Machine Design) Examination, May-2017

THEORY OF ELASTICITY

Paper-M-802-A

Time allowed: 3 hours]		[Maximum marks : 100	
Note	: Attempt any five que equal marks.	estions. All questions carry	
1.	What is generalized Hooke's law? Establish the stress-		
	strain relationship for isot	ropic materials and hence the	

2. Derive the transformation equation for 3D stress state.

Explain stress ellipsoid.

relationship between E,G and K.

- 3. A cantilever beam of span 1, unit width, depth 2C is subjected to a concentrated load P at the free end. Assuming a stress function j=Axy+(B/6xy3, determine the stresses sxx, syy and txy. Give your comments on results obtained.
- 4. Discuss the concept of two dimensional elasticity problems in polar coordinates.
- 5. Sketch the stress-strain distribution for elastic plastic yielding of a beam. Also calculate the bending moment

22231-P-2-Q-8 (17)

[P.T.O.

		he elastic-plastic state. The beam has rect	_		
	CIOS	ss section with width b and height h.	20		
6.	Exp	plain the torsion of thin rectangular section.	20		
7.	Dis	Discuss the Curvilinear coordinates and stress			
	com	aponents in detail.	20		
8.	Wri	Write short notes on the following:			
	(a)	Mohr's circle			
	(b)	Thick cylinder			
	(c)	Application of energy method to torsion pr	oblem.		
		-	20		