Roll No.

22231

M. Tech. 2nd Sem. Mechanical Engg. (Machine Design)

Examination – December, 2014 THEORY OF ELASTICITY

Paper: M-802-A

Time: Three hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any *five* questions. All questions carry equal marks.

1. The stress (in N/m²) acting on an element of a loaded body figure. Apply Mohr's circle to determine the normal and shear stresses acting on a plane defined by $\theta = 30^{\circ}$.

Fig. 1

- **2.** At a point in a given material, the three dimensional state of stress is given by $\sigma_x = \sigma_y = \sigma_z = 10 \text{N}/\text{mm}^2$, $\tau_{xy} = 20 \text{ N}/\text{mm}^2$ and $\tau_{yz} = \tau_{zx} = 10 \text{N}/\text{mm}^2$ Compute the principal planes if the corresponding principal stresses are $\sigma_1 = 37.2 \text{ N}/\text{mm}^2$, $\sigma_2 = -10 \text{N}/\text{mm}^2$ and $\sigma_3 = 2.7 \text{N}/\text{mm}^2$.
- **3.** Investigate what problem is solved by $\phi = \frac{F}{d^3}xy^2(3d-2y)$ applied to the region included y = 0, y = d, x = 0 on the side x positive.
- **4.** The stress function

$$\phi = S \left(\frac{1}{4} xy - \frac{xy^2}{4c} - \frac{xy^3}{4c^2} + \frac{ly^2}{4c} + \frac{ly^3}{4c^2} \right)$$
 is proposed as

giving the solution for a cantilever $y = \pm c$, (0 < x < l) loaded by uniform shear along the lower edge, the upper edge and the end x = l being free from load. In what respect is this solution is imperfect? Compare the expression for the stress with those obtained from elementary tension and bending formula.

5. A rectangular plate is subjected to uniform shearing force of intensity q on it edges. If there is a small circular hole in the plate not near the boundary, what will be the maximum and minimum normal stress around the hole?

- **6.** Drive the expression for torsion of thin rectangular sections.
- 7. (a) Determine the real functions of x and y which are the real and imaginary parts of the complex functions z^2 , z^3 , $\tanh z$.
 - (b) What are the benefits of using complex stress functions?
- 8. (a) Brifely explain Edge dislocation.
 - (b) Drive the following equation for coordinate transformation of displacement component. 10

$$u_r = u \cos \theta + v \sin \theta$$
, $u_{\theta} = -u \sin \theta + v \sin \theta$,

$$u = u_r \cos \theta - u_\theta \sin \theta$$
, $v = u_r \sin \theta + u_\theta \cos \theta$,