M.Tech. 2nd Semester (CSE) CBCS Scheme Examination, May-2017 ALGORITHM DESIGN Paper-MTCSE22C2

Time allowed: 3 hours] [Maximum marks: 100

Note: Attempt any five questions, selecting one question from each unit and question number one is compulsory.

- 1. (a) How can you modify Quick sort algorithm to search an item in a list of elements? 5×5=20
 - (b) What are three properties of NP-Complete problem?
 - (c) Can the master method be applied to solve recurrence:

$$T(n) = 4 T(n/2) + n^2 \log n$$
?

Justify your answer.

(d) Explain Branch and Bound technique.

Unit-I

- 2. (a) What do you mean by time complexity of an algorithm? Explain notations used to denote the time complexity of an algorithm.
 - (b) Write algorithm for Union and find operations for disjoint sets.

226	44
-----	----

		(2)	2044
3.	Expl	ain Red-Black tree with suitable example	. 20
		Unit–II	
4.	Exp	at do you mean by dynamic program lain O/I Knapsack problem by using ramming.	
5.	(a)	What is backtracking? Solve 8 Queen's with Backtracking.	problem 10
	(b)	What is sum of subset problem? How solved using backtracking.	it can be
		Unit-III	
6.	(a)	Explain NP-Hard problems with examp	le. 10
	(b)	Explain NP-Scheduling problems.	10
7.	Exp	lain Boyer-Moore Algorithm with examp	ole. 20
		Unit-IV	•
8.	Explain fully polynomial time approximation schemes.		
9.	Dis	Discuss the following: $10 \times 2 = 20$	

(a)

(b)

PRAM Models

Polynomial time approximation.