https://www.haryanapapers.com

https://www.haryanapapers.com

22023

22023

M. Sc. Physics 2nd Semester Examination – May, 2019

ATOMIC AND MOLECULAR PHYSICS

Paper: Phy(H)-203

Time: Three hours]

[Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

- 1. (a) What are the possible values of n, l and m_s if a hydrogen atom has $m_l = -2$?
 - (b) Distinguish between the normal and anomalous Zeeman Effect.
 - (c) The intensity of J = 0 → J = 1 is often not the most intense line. Why?

P. T. O.

(d) Write the main features of Vibrational rotational spectra of diatomic molecules.

UNIT-1

- (a) Drive an expression for the spin orbit interaction energy. Draw energy level diagram for hydrogen atom.
 - (b) Define gyromagnetic ratio. Find the relation between μ_s and S of an electron.
- 3. Calculate the spin orbit interaction energy for a single non penetrating valence electron. How will you explain the separation of ²P and ²D terms of alkali spectra?

UNIT - II

https://www.haryanapapers.com

- (a) Distinguish between normal Zeeman, anomalous Zeeman and Paschen back effects. Determine the Lande g-value for the various levels of ³P and ³D multiplets.
 - (b) Illustrate with an energy level diagram, Pachen Bach effect for the D₂ line of sodium.
- 5. (a) Calculate Zeeman pattern for ³P₁ ³P₂ transition in one electron atom.
 - (b) Show by actual transitions the Stark effect components of H_{α} line of hydrogen.

(2)

UNIT - III

- 6. Obtain the expression for the energy of a rigid-rotator model of diatomic molecule and predict the pure rotational spectra of the molecule.
 18
- 7. (a) The far infra-red spectrum of H 1 Br 79 consists of a series of lines spaced 17 cm $^{-1}$. Find the internuclear distance of H 1 Br 79 . (h = 6.63 × 10 $^{-34}$ J s, c = 3 × 10 8 m/s & N_A = 6.023 × 10 23 mol $^{-1}$).
 - (b) Diatomic molecules such as CO, HF will show a rotational spectra whereas N₂, O₂. H₂ will not. Why? Will the molecule ¹⁷O ¹⁶O show a rotational spectra.

UNIT - IV

- 8. (a) Explain diatomic molecule as symmetric top.

 Deduce expression for the rotational energy levels
 of a symmetric-top molecule and discuss the
 structure of their vibrational bands.
 - (b) Find the amplitude of vibration of HCl in the first excited vibrational level. The force constant k of the vibrating HCl molecule is 480 N/m and its reduced mass is 1.62×10^{-27} . (h = 6.63×10^{-34} J s) 4
- 9. Discuss the fine structure of Infrared bands of diatomic molecules. Why they are all degraded towards longer wavelength?

https://www.haryanapapers.com