UNIT - IV

- **7.** (a) Describe the deterministic and non-deterministic finite automaton. How deterministic automaton differ from non-deterministic finite automaton?
 - (b) Explain Moore machine with the help of example.
- **8.** Explain the following terms with the help of example :
 - (a) Grammar and its types
 - (b) Language and Régular Expression

Roll No.

67011

MCA 1st Semester (With Old Notes) Examination – November, 2017

MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Paper: MCA-101

Time: Three Hours]

[Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt *five* questions in all by selecting at least one question from each Unit. All questions carry equal marks.

UNIT - I

- 1. (a) Define identity relation and show that the relation R on the set $N \times N$ defined by (a, b) R (c, d) iff ad = bc is an equivalence relation.
 - (b) Define one-one and onto function. Also find the inverse of the function f(x) = 4x 7, $x \in R$

- 2. (a) Let * be a binary operation on the set Q of all non-zero rational numbers defined by a * b = 2ab / 3 for a, b ∈ Q.
 - (i) Is * is associative
 - (ii) Find the identity element in (Q, *)
 - (iii) Find the inverse of an element in (Q, *)
 - (b) Define cyclic group and coset with the help of examples.

UNIT - II

- **3.** (a) Determine the validity of the following argument without using truth table:
 - "Either I will pass the examination, or I will not graduate. If I will not graduate then I will go to Canada. I failed therefore I will go to Canada".
 - (b) Define disjunctive normal form (dnf) and obtain the dnf of the proposition

$$p \Rightarrow [(p \Rightarrow q) \land \neg (\neg q \lor \neg p)]$$

- **4.** (a) Prove that the following propositions are tautologies using truth table :
 - (i) $[p \land (p \Rightarrow q)] \Rightarrow q$
 - (ii) $\sim p \Rightarrow (p \Rightarrow q)$

(b) Prove by mathematical induction 1.2 + 2.3 + 3.4 + ... + n.(n+1) = n (n+1) (n+2) / 3.

UNIT - III

- **5.** (a) Consider the poset A = ({1, 2, 3, 4, 6, 9, 12, 18, 36}, / draw the Hasse diagram and find the greatest lower bound and least upper bound of the sets {6, 18} and {4, 6, 9}.
 - (b) Explain the following terms with suitable example:
 - (i) Lattice
 - (ii) Bounded Lattice
 - (iii) Partially ordered set
- **6.** (a) Let B = {1, 2, 3, 4, 6, 12} be the set of positive factors of 12. Two binary operations '+' and'.' are defined as follows:

a+b=lcm (a,b) and $a\cdot b=\gcd(a,b)$ for all $a,b\in B$ A unary operation' / 'on B is defined as $a'=\frac{12}{a}$ for all $a\in B$. Show that (B,+,.,/,1,12) is a Boolean algebra.

(b) If B is a Boolean algebra and $x,y \in B$, then show that (x + y) + (x',y') = 1.