UNIT-IV

- **8.** (a) Define language and regular expression. Find the language for the regular expressions given as:
 - (i) $a + bc^*$
 - (ii) bc * b
 - (b) What is Chomsky Hierarchy? Explain with the help of example.
- 9. (a) Consider a Non-deterministic Finite State Automation (NDA) whose transition function is given in the table. Let $S = \{s_0, s_1, s_2\}, F = \{s_1\},$ $\Sigma = \{0, 1\}$

Transition Function Table

Σ	δ	
s	0	1
$\rightarrow s_0$	$\{s_1\}$	{s ₀ }
s_1	{s ₂ }	$\{s_1, s_2\}$
s_2	{s ₂ }	{s ₂ }

Construct a transition diagram for NFA and DFA equivalent to NF A.

(b) Define Mealy machine with the help of example.

Roll No.	************
INDULINO	**********************

67006

MCA 1st Semester (Current) CBCS Scheme w.e.f. Dec.-2016 Examination – November, 2017 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Paper: MCA-101(C)

Time: Three Hours 1

[Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all. Question No. 1 is compulsory and attempt four more questions by selecting one question from each Unit. All questions carry equal marks.

- **1.** (a) Determine the domain and range of the relation Rdefined by $R = \{(x, x + 5) : x \in (0, 1, 2, 3, 4, 5)\}.$
 - (b) Consider a relation R on $A = \{4, 5, 6, 7\}$ defined by $R = \{(4, 5), (5, 5), (5, 6), (6, 7), (7, 4)\}.$ Find the symmetric closure of R.
 - (c) Write in symbolic form: If either Raman takes Computer Science or Pooja takes Mechanical

Engineering then Priti shall take Electrical Engineering.

- (d) Define predicate logic with the help of example.
- (e) Define partial order relation.
- (f) Let $A = \{2, 3, 4, 6, 8, 24, 48\}$ with partial order divisibility. Determine all the maximal and minimal elements of A.
- (g) If $\Sigma = \{a, b\}$ then find Σ^* .
- (h) What is use of finite automata?

UNIT-I

- **2.** (a) Let $A = \{0, 1, 2, 3,\}$ and $R = \{(x, y) : x y = 3k, where <math>k$ is an integer $\}$ i.e. xRy iff x y is divisible by 3, then prove that R is an equivalence relation.
 - (b) Define function and prove that the function $f: R \{-1\} \to R \{1\}$ given by $f(x) = \frac{x}{x+1}$ is invertible.
- **3.** (a) For both binary operation * defined below, determine whether * is commutative and associative
 - (i) * on Q, defined by a * b = ab + 1
 - (ii) * on Z, defined by $a * b = 2^{ab}$
 - (b) Consider an algebraic structure (G, *), where G is the set of non-zero real numbers and * is a binary operation defined by $a * b = \frac{ab}{4}$. Show that (G, *) is an abelian group.

UNIT- II

4. (a) Use laws to show that:

$$(p \to q) \land (r \to q) \equiv (p \lor r) \to q$$

- (b) Determine the validity of the following argument without using truth table. " If the market is free then there is no inflation. If there is no inflation then there are price control. Since there are price controls, therefore, the market is free."
- **5.** (a) Define tautology and contradiction and verify that the compound proposition given as $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is tautology or not.
 - (b) Using principle of mathematical induction, prove that $(n^3 + 2n)$ is divisible by 3 for every positive integer n.

UNIT-III

- **6.** (a) Consider the poset (A, /) where $A = \{1, 2, 3, 4, 6, 9, 18, 36\}$, Draw the Hasse diagram and find the greatest lower bound and least upper bound of the sets $\{6, 18\}$ and $\{4, 6, 9\}$.
 - (b) Define bounded lattice and distributive lattice with the help of example.
- **7.** (a) Show the following in Boolean algebra :
 - (i) (x + y) (x' + z) = xz + x'y + yz
 - (ii) xy' + yz' + zx' = x'y + y'z + z'x
 - (b) Let (L, \land, \lor) is a complemented and distributive lattice and any element $a \in L$, then prove that complement of a is unique.