(b) Let (P, \leq) be a distributive lattice, show that if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some a, then x = y.

UNIT - IV

- **8.** (a) Define regular expression and write the regular expression for the following regular sets:
 - (i) {00, 001, 0011, 00111,}
 - (ii) Set of all strings over $\{a, b\}$ containing exactly two a's
 - (iii) Set of all strings over {0, 1} containing exactly 0.
 - (b) What is phase structured grammars? Explain various types of phase structured grammars.
- **9.** (a) What do you mean by deterministic finite automata? Design a finite automata that accepts set of strings such that every string ends in 00, over an alphabet {0, 1}.
 - (b) Explain Moore machine with the help of example.

(4)

Roll	No.	 . .	

67006

MCA 1st Semester (Current) CBCS Scheme w. e. f. Dec - 2016 Examination – December, 2016 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Paper: MCA-101 (C)

Time: Three Hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: Attempt *five* question in all. Question No. 1 is compulsory and attempt four more questions by selecting one from each Unit. All questions carry equal marks.
- **1.** (a) What is the difference between relation and a function?
 - (b) Consider a relation R on $A = \{7, 8, 9\}$ defined by $R = \{(7, 8), (7, 9), (8, 8), (9, 8)\}$. Find the reflexive closure of R.

- (c) Give truth table of conditional and bi-conditional proposition.
- (d) What are quantifiers in predicate logic?
- (e) Define the term lattice.
- (f) Consider a set $A = \{4, 9, 16, 36\}$. Is the relation 'divides' a partial order on A?
- (g) Define alphabet and string with the help of example.
- (h) Describe in words the strings given as regular sets:
 - (i) $1(0)^*$
 - (ii) (10)*

UNIT - I

- **2.** (a) If *R* be a relation in the set $N \times N$, define by (a, b) R $(c, d) \Leftrightarrow a + d = b + c$ where $a, b, c, d \in N$, then prove that R is an equivalence relation.
 - (b) Define one-one and onto function and prove that the function $f: Q \to Q$ given by f(x) = 3x + 5 for all $x \in Q$ is one-one and onto.
- **3.** (a) What is binary operations? Discuss various properties of binary operations.
 - (b) State and prove Lagrange's Theorem.

UNIT - II

4. (a) What is conjunctive normal form (cnf) and disjunctive normal form (dnf)? Give an algorithm to convert given proposition into equivalent cnf or dnf.

- (b) Determine the validity of the following argument without using truth table:Either I will pass the examination or I will not graduate. If I will not graduate, I will not go to USA. I failed: Thus I will go to USA.
- **5.** (a) Verify that the given compound proposition is a tautology or not:

$$((p \to q) \to r) \leftrightarrow ((p \to q) \land (p \to r))$$

(b) Using the principle of mathematical induction, prove that $3^{2n+2}-8n-9$ is divisible by 64 for every positive integer n.

UNIT - III

- **6.** (a) Let $A = \{2, 3, 4, 6, 8, 12, 24, 28\}$ and \leq denotes partial order of divisibility. Construct the Hasse diagram. Let $B = \{4, 6, 12\}$, find :
 - (i) All upper bound of B
 - (ii) Least upper bound of B
 - (iii) All lower bound of B
 - (iv) Greatest lower bound of B
 - (b) Define complemented lattice and find the complement of each element in D_{42} (i.e. positive factor of 42) under the partial order of divisibility.
- **7.** (a) Define Boolean algebra. Establish the following relation in Boolean algebra :

(3)

$$(a + b) (b + c) + b \cdot (a + c) = a \cdot b + a \cdot c + b$$