Roll No.

24480

B. Tech. 7th Semester (ME) (Common with Special Chance) Examination - December, 2019

MECHANICAL VIBRATION

Paper: ME-409-F

Time: Three Hours 1

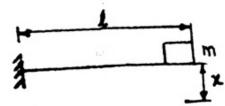
[Maximum Marks: 100

https://www.mdustudy.com

https://www.mdustudy.com

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any five questions. Question No. 1 is compulsory and attempt one question from each Sections.


- 1. Explain the following:
 - (a) Resonance
 - (b) Whirling of rotating shaft
 - Stiffness matrix
 - (d) Continuous and discrete vibration systems

24480-4150-(P-4)(Q-9)(19)

P. T. O.

SECTION - A

2. (a) Determine the natural frequency of the mass m placed at one end of cantilever beam of negligible mass as shown in figure below.

- (b) Explain Rayleighs method and its uses.
- 3. A vibratory system in a vehicle is to be designed with the following parameters:

$$k = 100N/m, C = 2N-sec/m, m=1kg$$

Calculate the decrease of amplitude from its starting value after 3 complete oscillations and the natural frequency of oscillation.

https://www.mdustudy.com

SECTION - B

- 4. A vibrating system having mass 1 kg is suspended by a spring of stiffness 1000 N/m and it is put to harmonic excitation of 10 N. Assuming viscous damping, determine:
 - (a) The resonant frequency
 - (b) The phase angle at resonance
 - The amplitude at resonance
 - (d). The frequency corresponding to the peak amplitude and
 - (e) Damped frequency

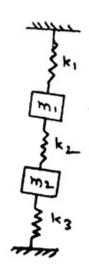
Take C = 40 N - sec/m

24480-4150-(P-4)(Q-9)(19)

(2)

5. What is Damping? Derive an expression for energy dissipated by damping in case of forced damped harmonic motion of a single degree of freedom system.

SECTION - C


6. For the system shown in figure find the two natural frequencies when

$$m_1 = m_2 = m = 9.8 \text{ kg}$$

$$k_1 = k_3 = 8820 \,\mathrm{N/m}$$

$$k_2 = 3430 \, \text{N/m}$$

24480-4150-(P-4)(Q-9)(19)

Find out the resultant motion of m_1 and m_2 for the following different cases:

(a) Mass m_1 is displaced 5 mm downward and mass m_2 is displaced 7.5 mm downward. Both masses are releases simultaneously.

P. T. O.

https://www.mdustudy.com

https://www.mdustudy.com

(3)

https://www.mdustudy.com

- (b) Mass m₁ is displaced 5 mm upward while mass m₂ is held fixed. Both masses are then releases simultaneously.
- What is the use of Dunkerley's Method? Write its equation and explain it with suitable example.

SECTION - D

- 8. Derive expression for Torsional Vibration in a Rod.
- What is Longitudinal Vibration? Derive an expression for longitudinal vibration of Rod.

https://www.mdustudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायँ, Paytm or Google Pay से

24480-4150-(P-4)(Q-9)(19) (4)