B.Tech. (ME) 2nd Semester G-Scheme

Examination, May-2019

MATH-II

Paper-BSC-MATH-102-G

(Multivariables Calculus, Differential Equations and Complex Analysis)

Time allowed: 3 hours]

[Maximum marks: 75

Note: Question No. 1 is compulsory. Attempt five questions in total by selecting one question from each unit. All questions carry equal marks.

- 1. (a) Evaluate $\iint_{0}^{4} (xy + e^{y}) dx$ dy.
 - Solve $(2x \cos y + 3x^2y) dx +$ $(x^3-x^2 \sin y-y) dy = 0$
 - Define Mobius transformation, and when it is called univalent.
 - prove that sinh z is analytic function.
 - If n is an integer s.t. $n \neq -1$ and C is circle |z-a|=r. Then prove $\oint_C (z-a)^n dz = 0$
- (f) Evaluate $\oint_C (x^2 y^2 + 2ixy)$, where C is the contour |z|=1. $6 \times 2.5 = 15$ 3015-P-3-Q-9(19) [P. T.O.

https://www.haryanapapers.com

(2)

3015

https://www.haryanapapers.com

Unit-I

- 2. (a) Evaluate $\iint \frac{(x-y)^2}{x^2+y^2} dx dy$, over the circle $x^2 + y^2 \le 1.$ 7.5
 - By changing the order evaluate the integral

$$\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) \, dx \, dy.$$
 7.5

Verify Stoke's Theorem for $\bar{f} = x^2 \hat{i} + xy \hat{j}$, integrated around the square in the plane z=0, whose sides are along the lines x = 0, x = a, y = 0 and y = a.

Unit-II

- 4. (a) Solve the equation $\frac{d^2y}{dx^2} + y \csc x$ by using method of variation of parameters.
 - Solve Cauchy-Euler equation:

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = \log x \sin(\log x).$$
 7.5

- Express the polynomial x^3+2x^2-x-3 in terms of Legendre's polynomials.
 - (b) Find the power series solution about x=0, of $(1-x^2)$ y"-2xy'+2y=0. 8

3015

https://www.haryanapapers.com

https://www.haryanapapers.com

(3)

3015

Unit-III

- State and prove necessary and sufficient conditions for f(z) to be analytic.
- 7. (a) Show that the function u=e^{-2xy} sin (x²-y²) is harmonic. Find the conjugate function v and express u + iv as an analytic function of z.
 - (b) Determine the analytic function whose real part is (e^xx cos y-e^xy sin y).

Unit-IV

- 8. (a) Expand $\frac{e^{2z}}{(z-1)^3}$ in Laurent's series about its singularity. 7.5
 - (b) Evaluate the residues of $\frac{z^2}{(z-1)(z-2)(z-3)}$ at z=1,2,3 and ∞ , also determine their sum. 7.5
- 9. (a) Verify Cauchy's integral theorem by integrating e^{iz} along the boundary of the triangle with vertices at the points 1+i, -1+i and -1-i.
 - (b) Use Cauchy's integral formula to evaluate $\oint_C \frac{e^{2z}}{(z+1)^4(z+5)} dz, \text{ where C is the circle } |z| = 2.7$

https://www.haryanapapers.com