http://www.HaryanaPapers.com

Roll No.	*****************
----------	-------------------

24043

B. Tech 3rd Semester (IT) Examination – December, 2017 DIGITAL ELECTRONICS

Paper: EE-204-F

Time: Three Hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions, Question No. 1 is compulsory and one question from each Sections.

All questions carry equal marks.

1. (a) What is Latch?

- $5 \times 4 = 20$
- (b) Realize EX-OR gate using NAND gate.
- (c) Differentiate:

Ripple counter and synchronous counter.

(d) Draw and explain circuit for one bit comparator.

24043-7150-(P-3)(Q-9)(17)

P. T. O.

10

20

http://www.HaryanaPapers.com

SECTION - A

2.	(i)	Multiply (5.65) ₈ by (2.432) ₈	20	
	(ii)	Divide (50:1) ₈ by (3) ₈		
	(iii)	Convert (ABD73) ₁₆ into () ₈		
	(iv)	Convert (34674) ₈ into () ₂		
	(v)	Subtract 8 – 10 using 2's compliment.		
3.	(a).	What are universal gates ? Derive basic ga	ates	
		from universal gates.	10	
	(b)	Design the ckt. after minimizing using k-map	10	
		$f(A, B, C, D) = \sum (0, 1, 2, 3, 6, 7, 9, 13) + \sum (11, 15)$))	
SECTION - B				
4.	(a)	Explain full adder with truth table and circuit.	10	
	(b)	Explain 3-8 decoder.	10	

(b)	Seven bit hamming code is received as	1011001
	locate the error position and find the corre	ect code,
	if even parity is used.	10

SECTION - C

	• •			
6. (a)	What is race round condition and how we	can		
	remove it?	10		
(b)	Explain bidirectional shift register.	10		
7. (a)	Construct D-flip flop using JK-flip flop.	10		
(b)	Explain 4 bit comparator.	10		
SECTION - D				
8. (a)	Design the circuit of half adder using ROM.	10		

- 9. Write short notes on:
 - (a) PLD's and CPLD's
 - (b) PAL and PLA

(b) Explain TTL.

24043-7150-(P-3)(Q-9)(17) (2)

5. (a) Design BCD to 7 segment decoder.

24043-7150-(P-3)(Q-9)(17)

(3)

10