B.Tech. 3rd Semester (I.T.) Examination, December–2016 DIGITAL ELECTRONICS

Paper-EE-204-F

	Time al	lowed: 3 hours] [Maximum marks: 100
Not		The candidate will be required to attempt five questions in all at least one question from each unit. Question No. 1 is compulsory.
	1. (a)	What is meant by parity bit?
	(b	Define duality property. 1
	(c) State De Morgan's theorem. 2
	(d)) What is encoders and decoders? 4
	(e)) Define sequential circuits and latches. 2
	(f)	Difference between latches and flip flop. 2
	(g) What is the difference between PLA and PAL?
	(h)	What is the asynchronous sequential logic? 2
	(i)	Explain hamming codes with example. 2
	(j)	Define binary codes, cyclic codes, error detecting
http://www.haryanapaper	s.con 24043	and error correcting codes. 2 P-7-Q-9 (16) [P.T.O.

http://www.HaryanaPapers.com **24043** (2)

(3)

24043

Unit-I

- Design a simple logic circuit such that the output 2. is 1 when the binary numbers A, B, C, D is greater than 0110.
 - In a 4-input NAND gate, two inputs are to be used. What are the options available for the unused inputs and which one is the best and why?
 - What is prime implicants? and state distributive law.
- 3. Perform the following operations on the given binary numbers a specified:
 - 110.01 + 1.011
 - Convert 11101.01 to decimal
 - (iii) 11100.101-101.01 using 2's compliment.
 - (iv) State whether the following statement is true or false:

"All decimal fractions have exact binary equivalents" and justify your answer. 2 Solve the following expression by mapping:

 $F = \Sigma m (0, 2, 3, 6, 7, 8, 9, 10, 13).$

Write the steps involved in solving this Quine-McClusky method.

- Perform the operation $(12_{10} 35_{10})$ using 2's compliment method.
- Obtain the minimal SOP expression for 14, 15) + d (2, 4) using k-map. Realize the expression using 2-input NAND gates only.

Unit-II

- Construct a 4-input multiplexer using four 3-input AND gates, an OR gate and three inverters. Show the input, output and select lines and write a table showing the outputs for various select inputs. 8
 - Design a combinational circuit that accepts a 3-bit number as input and generates an output binary number equal to square of the input number.