7. (a) Find the largest Eigen value of the matrix, using power method :

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$

(b) Determine the eigen value and the corresponding eigen vector of the matrix by using Jacobi's Method:

$$\begin{bmatrix} 2 & 3 & 1 \\ 3 & 2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

SECTION - D

- **8.** Using Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3 Given the $\frac{dy}{dx} = xy + y^2$, y(0) = 1.
 - Continue the solution at x = 0.4 using Milne's method.
- **9.** Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mess with boundary values as shown:

Roll No.

24835

B. Tech. 6th Semester (Fire Tech. & Safety) Examination – May, 2016

APPLIED NUMERICAL TECHNIQUE AND COMPUTING

Paper: FT-310-F

Time: Three Hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt total five questions with selecting one question from each Section. All questions carry equal marks.

- **1.** (a) Round off the following numbers correct to four significant figures: 2.5×8 3.26245, 35.46735, 0.70035, 18.265101, 0.859378
 - (b) Define forward differences and backward differences.
 - (c) What are direct methods and iterative method to solve the system of linear equations?
 - (d) Discuss the rate of convergence of Newton Raphson Method.

- (e) What is Crank Nicolson Method? Why is it known as implicit method?
- (f) What are the limitations of Taylor's series method for solving ordinary differential equations?
- Define the terms Interpolation and Extrapolation.
- (h) Write the finite difference approximations to partial derivatives in x and y directions.

SECTION - A

Define the term absolute error. Given that:

$$a = 10.00 \pm 0.05$$

$$b = 0.0356 \pm 0.0002$$

$$c = 15300 \pm 100$$

$$d = 6200 \pm 100$$

Find the maximum value of the absolute error in

(a)
$$a+b+c+d$$

(b)
$$c^3$$

- (ii) If $u = 4x^2y^3/z^4$ and errors in x, y, z be 0.001. Compute the relative maximum error in u when x = y = z = 1
- **3.** (a) Given that :

$$x:$$
 150

152

154

 $y = \sqrt{x}$:

12.329

12.410

156 12.490

Evaluate $\sqrt{155}$ using Lagrange's interpolation.

(b) Find the natural cubic spline to fit the data:

2

1

y:

0

0

4

(2) 24835-200-(P-4)(Q-9)(16)

SECTION - B

4. (a) Given that:

1.0 1.1

1.2 7.989 8.403 8.781 9.129

1.3

1.4

1.5

9.451 9.750 10.031

1.6

Find $\frac{dy}{dx}$ at 1.0 and 1.5

- (b) Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ using
 - (i) Trapezoidal rule taking $h = \frac{1}{4}$
 - (ii) Simpon's rule taking $h = \frac{1}{6}$
- **5.** (a) Find a real root of the equation $3x = \cos x + 1$ by Secant Method correct to four decimal places.
 - (b) Using Newton-Raphson formula, find a root of the equation:

 $x \sin(x) + \cos(x) = 0$ up to three decimal places

SECTION - C

6. (a) Solve the system:

$$9x - 2y + z = 50$$

$$x + 5y - 3z = 18$$

$$-2x + 2y + 7z = 19$$

by using iterative method.

(b) Solve the system:

$$2x + 4y + z = 3$$

$$3x + 2y - 2z = -2$$

$$x - y + z = 6$$

by using Gauss elimination method.