- 7. Prove that ideal filters have constant gain, constant 10 group and phase delays.
  - Find the transfer function for Low Pass RC filter. Also draw its magnitude and phase spectrum. 10

## Section-D

- Find the z-transform of the following signals:
  - (i)  $\mu(k)$
  - (ii)  $(k+1) a^{k}$
  - (iii) b<sup>k</sup> sin ak
  - (iv) cos ak

20

Find inverse z-transform of the following:

(i) 
$$\frac{z^2}{z^3-1.7z^2+0.8z+0.1}$$

(ii) 
$$\frac{z^2-5}{(z-1)(z-2)^2}$$

# B.Tech. 4th Semester (ECE) - (F-Scheme) Examination, May-2018 SIGNALS AND SYSTEMS

Paper-EE-228-F

[ Maximum marks: 100 Time allowed: 3 hours ]

Note: Attempt five questions. Question No. 1 is compulsory and attempt one question from each of the four sections.

- Discuss energy and power signals.
  - Write down the time differentiation and integration property of Fourier transform. 5
  - A continuous time causal stable LTI system has the following response

$$H(jw) = \frac{1 - j2w}{1 + j2w}$$

Determine (i) |H (jw)| and

(ii) Group Delay T(w)

5

Explain S to Z plane mapping with help of an illustration.

5

#### Section-A

- 2. Explain the following signals with help of illustrations:
  - (i) Continuous time and Discrete time
  - (ii) Periodic and Non-Periodic
  - (iii) Even and Odd
  - (iv) Energy and Power

20

- 3. Discuss the following signals:
  - (i) Unit step
  - (ii) Unit impulse
  - (iii) Unit ramp
  - (iv) Exponential

20

10

### Section-B

- 4. (a) Obtain the Fourier transform of following:
  - (i) Impulse function



(ii) Exponentially decaying function



(b) Obtain the Fourier transform spectrum  $G_T(w)$  of the rectangular pulse defined as

$$g_{T}(t) = \begin{cases} 1 & |t| \leq \frac{T}{2} \\ 0 & \text{otherwise} \end{cases}$$

Also sketch the gate function.

10

5. State all the properties of Fourier transform with their proofs.

## Section-C

6. (a) In given circuit switch is closed at t = 0. Find out the currents  $I_1(t)$  and  $I_2(t)$ .



(b) Find the two sided Laplace Transform and ROC of the signal  $f(t) = e^{3t} u(-t) + e^{2t} u(t)$ .