- **9.** (a) State and prove following properties of Z Transform:
 - (i) Scaling
 - (ii) Convolution
 - (b) Using partial fraction expression method to find the inverse Z Transform of the following transfer function:

$$H(Z) = \frac{-4 + 8Z^{-1}}{1 + 6Z^{-1} + 8Z^{-2}}$$

(4)

Roll No.

24151

B. Tech. 4th Semester (ECE) Examination – May, 2017 SIGNALS & SYSTEMS

Paper : EE-228-F

Time: Three Hours |

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory.All questions carry equal marks.

- 1. (a) What is continuous time and discrete time signals?
 - (b) Define frequency differentiation property of discrete time Fourier Transform. 2
 - (c) Give definition of first order and second order continuous time systems.

	(d)	What is block diagram representation? 2
	(e)	Define differentiation property of Z Transform. 3
	(f)	Define final value theorem of Z Transform. 3
	(g)	Define region of convergence. 2
		SECTION - A
2.	Exp	plain unit step, unit ramp and unit impulse
•	fun	ction. Also write the relationship between them. 20
3.	(a)	Explain even and odd signals with the help of examples. 10
	(b)	Make a comparison between energy and power signals.
		SECTION - B
4.	(a)	Make a difference between continuous time
		Fourier Transform and discrete time Fourier
	•	Transform. 10
	(b)	State and prove Parseval's Theorem. 10
5.	(a)	Find the discrete time Fourier Transform of unit
		step sequence $x(n) = u(n)$.
	(b)	What is Fourier Transform ? State and prove different properties of Fourier Transform. 14
2415	51-40	00-(P-4)(Q-9)(17) (2)

SECTION - C

- **6.** Explain first order and second order discrete time systems with mathematical expression.
- **7.** Determine the Laplace Transform and the associated region of convergence and pole-zero plot for each of following function of time:

(a)
$$x(t) = e^{-4t}u(t) + e^{-5t}(\sin 5t). u(t)$$
 10

(b)
$$x(t) = \begin{cases} t, & 0 \le t \le 1 \\ 2 - t, & 1 \le t \le 2 \end{cases}$$

SECTION - D

- 8. (a) Find the Z Transform of discrete time unit step signal.8
 - (b) State and prove following properties of Laplace transform.
 - (i) Time shifting
 - (ii) Linearity
 - (iii) Conjugation