9. (a) State & Prove Cook's theorem.

10

(b) Show that Job sequencing with deadline is NP hard problem.

Roll	No.	***************************************

24362

B. Tech 6th Semester (CSE) Examination – May, 2018

ANALYSIS AND DESIGN OF ALGORITHMS

Paper: CSE-306-F

Time: Three Hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt five questions with at least one question from each Section.

1. Write short note on the following:

 $4 \times 5 = 20$

- (a) Asymptotic notation
- (b) Greedy Techniques
- (c) Dominance rule
- (d) P & NP Class

SECTION - A

- 2. (a) What are sets and disjoint sets. Also write Union and find algorithm for disjoint sets.10
 - (b) Explain time & space complexity.
- **3.** (a) Explain Quick sort algorithm in detail. Analyse its complexity also.
 - (b) State Strassen's matrix multiplication. How to solve this problem with Dynamic programming?10

SECTION - B

4. Explain the concept of minimum spanning trees. Solve the following graph using prime's algorithm. Also analyse its complexity.

5. Explain Optimal Binary search tree which includes following problem : n = 4 and $(a_1, a_2, a_3, a_4) = (do, if, int, while)$ with profits P(1:4) = (3, 3, 1, 1) in case of successful search & loss q(0:4) = (2, 3, 1, 1, 1) in case of unsuccessful search. Initially [W(i, i) = q(i)],

c (i, i) = 0 and r (i, i) = 0 where 0 < 2 < 4. Also write its algorithm and analyse its complexity.

SECTION - C

- 6. Explain 8-queens method, graph coloring and Hamiltonian cycle with example. Analyse their complexity also.
- **7.** Solve the following problem by using least cost Branch & Bound method:

Knapsack instance n = 4, p(1:4) = (10, 10, 12, 18) and weight w(1:4) = (2, 4, 6, 9) & max. capacity m = 15. 20

SECTION - D

8. Write short note on :

- $4 \times 5 = 20$
- (a) Polynomial time & non-polynomial time algorithm

(3)

- (b) Satisfiability
- (c) Clique decision problem
- (d) Reducibility.