Roll No.

24266

B. Tech. 5th Sem.

(Computer Science & Engg.) VIII

Examination – December, 2013

THEORY OF AUTOMATA COMPUTATION

'F' Scheme

Paper: CSE-305-F

Time: Three hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question number 1 is compulsory. Attempt one question from each section. All question carry equal marks.

- 1. (a) What is the need to study Automata theory? 5×4
 - (b) Give the central concepts of Automata theory.
 - (c) Construct an NFA for text search.
 - (d) Give short notes on Finite Automata with Epsilon Transitions.

(e) Explain right sentential form and left sentential form.

SECTION - A

- 2. (a) Construct a DFA with reduced states equivalent to r.e. 10 + (0 + 11) 0* 1.
 - (b) Construct left linear and right linear grammars for the languages: 10
 - (i) (0+1)*00(0+1)*
 - (ii) 0*(1(0+1))*
- 3. (a) If x and y are regular sets over Σ , then prove that $x \cap y$ is also a regular set over Σ .
 - (b) Convert the following NFA into an equivalent DFA.

SECTION - B

- 4. (a) State Pumping Lemma and prove that L= {0ⁱ 1^m 2^m | i>=, m>=1} is not regular.
 - (b) State and prove Myhill Nerode theorem. 10

- **5.** (a) Convert the grammar G=({A₁,A₂,A₃}, {a,b}, P,A₁) to GNF where P consists of the following productions:
 - $A_1 \rightarrow A_2 A_3$
 - $A_2 \rightarrow A_3 A_1 \mid b$
 - $A_3 \rightarrow A_1 A_2 \mid a$
 - (b) Construct a reduced grammar equivalent to the grammar: 10
 - S \rightarrow aAa, A \rightarrow Sb|bCC|DaA., C \rightarrow abb|DD, E \rightarrow aC, D \rightarrow aDA

SECTION - C

6. (a) Construct a PDA equivalent to the following grammar:

$S\rightarrow aAA, A\rightarrow aS|bS|a$

- (b) Does the PCP with $x = (b^3, ab^2)$ and $y = (b^3, bab^3)$ have a solution?
- 7. (a) Explain the Programming Techniques involved in Turing Machines.
 - (b) Design a Turing Machine to recognize the language {anbncm | n, m >=1}.

(3)

SECTION - D

- **8.** Show that CSL are closed under the following operations:
 - (a) Union
 - (b) Substitution
 - (c) concatenation
 - (d) intersection
- **9.** (a) What is a primitive recursive function? Show that the following function is primitive recursive: 10
 - r(x, y)= the remainder obtained when x is divided by y.
 - (b) Show that the function f(x, y) = x-y is partial recursive.