B.Tech. 5th Semester (F) Scheme (Civil) Examination, December-2018 NUMERICAL METHODS AND COMPUTING TECHNIQUES

Paper- CE-309-F

Time allowed: 3 hours]

Maximum marks: 100

Note: Attempt five questions in total by selecting one question from each section. Question no. 1 is compulsory.

- 1. (a) Write Lagrange interpolation formula.
 - (b) Define Numerical differentiation and integration.
 - (c) What is the difference between Euler's and modified Euler's method.
 - (b) Write finite difference approximations for first order and second order derivatives in x-direction.

Section - A

- 2. Discuss Bezier and B-spline curves with the help'of suitable examples.
- 3. Find the positive root of $x^4 x = 10$ correct to four decimal places, using Newton-Raphson method.

Section - B

4. Solve 10x - 7y + 3z + 5u = 6, -6x + 8y - z - 4u = 5, 3x + y + 4y + 11u = 2, 5x - 9y - 2z + 4u = 7 by Gauss - Jordan method.

24291-P-2-Q-9(18)

[P. T.O.

5. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ correct to three decimal places using Romberg's method. Hence find the value of \log_{2}^{2} .

Section - C

6. Using Runge-Kutta method of fourth order, solve for y at x = 1.2, 1.4, 1.6 from

$$\frac{dy}{dx} = \frac{2xy + e^{x}}{x^{2} + xe^{x}}$$
 given $x_{0} = 1$, $y_{0} = 0$.

7. Solve the equations:

$$10x - 2y - 3z = 205$$
; $-2x + 10y - 2z = 154$;
 $-2x - y + 10z = 120$ by Relaxation method.

Section - D

8. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in 0 < x < 5, $t \ge 0$ given that u(x, 0) = 20, u(0, t) = 0, u(5, t) = 100.

Compute u for the time-step with h = 1 by Crank-Nicholson method.

9. By the method of least squares, fit a parabola of the form $y = a + bx + cx^2$, to the following data:

x: 2 4 6 8 10 y: 6.07 12.85 31.47 57.38 91.29