7. Apply Milne's Method to find a solution of the differential equation $\frac{dy}{dx} - x - y^2$ in the range $0 \le x \le 1$ for the beundary condition y = 0 at x = 0, taking h = 0.2. Starting solutions required are to be obtained by using Taylor's series methods.

Section-D

8. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mess with boundary values as shown

9. (a) Fit a straight line, by the method of least squares, to the following data:

x: 1 2 3 4 5

y: 5 12 26 60 97

(b) Evaluate the pivotal values of the equation

$$\frac{\partial^2 u}{d^2 t} = 16 \frac{\partial^2 u}{d^2 x} \text{ taking } \Delta x = 1 \text{ up to } t = 1.25.$$

The boundary conditions are

$$u(x, 0) = x^2 (5 - x), u(0, t) = u(5, t) = 0, and u(x, 0) = 0.$$

B.Tech. 5th Semester (Civil Engg.) Examination, December-2015

NUMERICAL METHODS AND COMPUTING TECHNIQUES

Paper-CE-309-F

Time allowed: 3 hours]

[Maximum marks : 100

Note: Q. No. 1 is compulsory. Attempt total five questions with selecting one question from each section. All questions carry equal marks.

- 1. (a) What is curve fitting? What is the need for such an exercise? 2.5×8
 - (b) Define forward differences and backward differences.
 - (c) What are direct methods and iterative method to solve the system of linear equations?
 - (d) Discuss initial value problems and B.V.P's.
 - (e) What is Crank Nicolson Method? Why is it known as implicit method?
 - (f) Find by Taylor's series method, the value of y at x = 0.1 and x = 0.2 from $\frac{dy}{dx} = x^2y 1$, y(0) = 1
 - (g) Write down the Newton Cotes Quadrature formula.

2.0

(h) Write the finite difference approximations to partial derivatives in x and y.

Section-A

2. (a) Fit a second degree parabola to the following data:

x: 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1

(b) Determine f(x) as a polynomial in x for the following data:

x: -4 -1 0 2 5 f(x): 1245 33 5 9 1335by using Divided Diff. Table.

- 3. (a) Find a real root of the equation $x^3 + x^2 1 = 0$ by fixed point Method.
 - (b) Find a real root of the equation $\log x = x 3$ taking $x_0 = 0.25$, $x_1 = 0.5$, $x_2 = 1$ by using Muller's Method.

Section-B

4. (a) Solve the system

$$2x + 4y + z = 3$$

$$3x + 2y - 2z = -2$$

$$x - y + z = 6$$

by using Gauss elimination method

(b) Solve the system

$$9x - 2y + z = 50$$

$$x + 5y - 3z = 18$$

$$-2x + 2y + 7z = 19$$

by using Relaxation method.

5. (a) Derive the derivatives formulae using forward difference formula and hence find the first and second derivatives of f(x) at 1.1 if

x: 1.0 1.2 1.4 1.6

f(x): 0 0.128 0.544 1.296 2.432 4.00

(b) Evaluate $\int_{0}^{4} e^{x} dx$

Given e = 2.72, $e^2 = 7.39$, $e^3 = 20.09$, $e^4 = 54.6$

by (i) Trapezoidal Rule

- (ii) Simpson's Rule
- (iii) Boole's Rule

Section-C

6. (a) Find the largest Eigen value of the matrix, using power method

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3 \end{bmatrix}$$

(b) Using Runge-Kutta method, compute y (0.2) and y (0.4) from

$$10 \frac{dy}{dx} = x^2 + y^2, y(0) = 1$$