B.Tech. 2nd Semester F-Scheme

(Common for All Branches) Examination,

May-2019

ELECTRICAL TECHNOLOGY

Paper-EE-101-F

Time allowed: 3 hours]

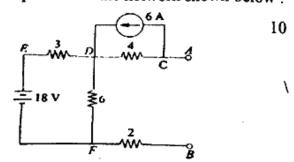
[Maximum marks: 100

Note: Question No. 1 is compulsory. Attempt any one question from each section.

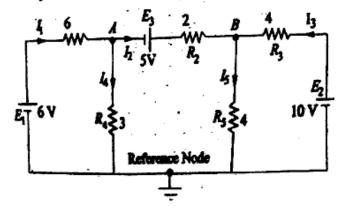
- What is the significance of back e.m.f. in working of DC motors?
 - Distinguish between unilateral and bilateral network.
 - State and explain maximum power transfer theorem.
 - Describe advantages of polyphase system.
 - Define eddy current and hysteresis losses of transformer.

Section-A

State and explain Superposition theerem with 2. some suitable example. 10


[P. T.O.

(2)


24007

https://www.mdustudy.com

Find the Thevenin equivalent circuit for the terminal pair AB of the network shown below:

- Derive the equation for star to delta and delta to 3. star transformation in DC network. 10
 - Find the current in the various branches of the circuit shown below by using Loop analysis. 10

Section-B

An inductive circuit of resistance 3Ω and inductance of 0.02 H is connected to a 230 V, 50 Hz supply. What value of capacitance is placed

24007

https://www.mdustudy.com

https://www.mdustudy.com

https://www.mdustudy.com

24007-P-4-Q-9(19)

https://www.mdustudy.com

24007

https://www.mdustudy.com

- in parallel with the inductive circuit, such that it will produce resonance? Also find current from 10 supply at resonance.
- Define resonance for series circuit, also sketch resonant circuit, phasor diagram and resonant 10 characteristics.
- Two coils A and B are connected in series across 5. a 240-V, 50 Hz supply. The resistance of A is 5Ω and inductance of B is 0.015H. If the input from the supply is 3 Kw and 2 kVAR, find inductance of A and resistance of B. Calculate 10 voltage across each coil.
 - Derive the mathematical equation for RMS and average values of sinusoidal signal. 10

Section-C

- Draw and explain transformer's phasor diagram under loaded condition with unity, leading and 10 lagging power factor.
 - Derive emf equation of single phase transformer. A 330/250 V, 50 Hz single phase transformer is built on a core having effective cross sectional area of 12.5 cm. and 75 turns on the low voltage winding. Calculate max. Flux density and number 10 of turns on high voltage side.

[P. T.O.

(4)

24007

https://www.mdustudy.com

7. Explain the circuit used for measurement of three phase power by using two wattmeter method. Derive expressions for it. 10

A balanced star connected load of (8+j6) ohm per phase is connected to a 3-phase, 230 V, 50 Hz supply. Find the line current, power factor, active power and reactive power. 10

Section-D

- Describe constructional details of D.C. generator 8. in detail.
 - Explain the principle of operation of 3-6 synchronous motor. Why is starting torque not produced in this motor?
- Describe construction and working principle of dynamometer type wattmeter and mention its advantages and disadvantages. 10
 - Explain the construction of single phase induction type energy meter. Show that the revolutions made by disc are proportional to the energy supplied. 10

24007

https://www.mdustudy.com

https://www.mdustudy.com