B.Tech. 1st Semester F. Scheme Examination, December–2014

PHYSICS

Paper-PHY-101 F

Time allowed: 3 hours] [Maximum marks: 100

Note: Students have to attempt five questions in total, selecting at least one question from each section.

Question No. 1 is compulsory. Each question carries equal marks (20 marks).

- 1. (a) Discuss how step index fiber differs from graded index fiber.
 - (b) What is optical pumping?
 - (c) Write a short note on dispersive power of grating.
 - (d) State Gauss's law with dielectric.
 - (e) Write Lorentz transformation equations of space and time.
 - (f) Discuss some practical applications of superconductors.
 - (g) How we can generate circularly polarized light?

- (h) Write short note on Einstein's coefficients.
- (i) An optical fiber has a numerical aperture 0.15 and cladding refractive index 1.55. Determine the acceptance angle of the fiber in water whose refractive index is 1.33.
- (j) Calculate the specific rotation if the plane of polarization is turned through 22°, traversing 15 cm length of 20% sugar solution. 10×2=20

Section-A

- 2. (a) Explain the set up and working of Michelson-interferometer.
 - (b) Discuss the Fraunhoffer diffraction at a single slit and show that the relative intensities of maximas are in the ratios of 1:1/22:1/61:1/121.
- 3. (a) What are Newton's rings? Explain the formation of Newton's ring in reflected light?
 - (b) What is a grating? Explain the spectra formed by a plane transmission diffraction grating.

Section-B

- 4. (a) Describe the construction and working of Nicol Prism.
 - (b) Discuss the construction and working of Laurent's half shade polarimeter. 10

5.	(a)	Discuss the terms: Stimulated absorption	on,
		Spontaneous emission, Stimulated emission.	10

(b) Describe the principle, construction and working of a He-Ne laser with the help of a neat diagram.

10

Section-C

- 6. (a) What is meant by Numerical aperture of an Optic Fiber? Derive the expression for the NA of a step index fiber.
 - (b) Derive an expression for the energy density of electric field established in a dielectric medium.

7. (a) What is Clausius-Mossotti relation? Derive the

Expression. 12

(b) Calculate the refractive index of the core and cladding material of a fiber having NA = 0.22, Δ =0.012, where the symbols have their usual meanings.

Section-D

- 8. (a) Discuss in detail the Michelson-Morley experiment and explain its importance. 10
 - (b) State and prove the law of equivalence of mass and energy.

24003

- 9. (a) Derive the London's equations and discuss how its solution explain the Meissner effect and flux penetration?
 - (b) Discuss the terms
 - (i) Type I
 - (ii) Type II superconductors
 - (iii) Meissner effect
 - (iv) Persistent current.