3008

B. Tech. 1st Semester (CSE) Examination – March, 2021

MATH - I (Calculus and Linear Algebra)

Paper: BSC-MATH-103-G

Time: Three Hours]

[Maximum Marks : 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

- 1. Answer the following questions in brief: $2.5 \times 6 = 15$
 - (a) State Taylor's and Maclaurin theorem with remainders.
 - (b) Examine the linear independence of the following set of vectors

$$\{(1, 2, 3), (1, 1, 1), (0, 1, 2)\}$$

- (c) Show that for two matrices A and B, (AB)⁻¹ = B⁻¹ A⁻¹.
- (d) Show that the function T: R³ → R² defined by T(x, y, z) = (|x|, y-z) is not a linear transformation.

- (e) If T: U → V is a linear transformation, then show that ker T is a subspace of U.
- (f) If A is a square matrix, prove that (A + A') is symmetric and (A A') is skew-symmetric.

UNIT - I

2. (a) Evaluate $dt \int_{x\to 0} \frac{1}{x^2} - \frac{1}{\sin^2 x}$

- (b) Prove that equation of the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $(ax)^{2/3} + (by)^{2/3} = (a^2 b^2)^{2/3}$ 8
- 3. (a) Find the volume generated by revolution about initial line of $r = a(1 \cos \theta)$.

8

(b) Prove that: (i) $\int_{-\sqrt{1-x^5}}^{1} \frac{xdx}{5} = \frac{1}{5}\beta\left(\frac{2}{5}, \frac{1}{2}\right)$

(ii)
$$\int_{0}^{1} \frac{dx}{\sqrt{1+x^4}} = \frac{1}{4\sqrt{2}} \beta \left(\frac{1}{4}, \frac{1}{2} \right)$$

UNIT - II

4. (a) If $A = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$, compute AB and BA and show that $AB \neq BA$.

(b) Find the rank of a matrix
$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
 7½

- 5. (a) Using Cromer's rule, solve the following equation: x + 3y + 6z = 2; 3x - y + 4z = 9; x - 4y + 2z = 7. 7%
 - (b) Solve the following system of equations by using Gauss-Jordan elimination method: 7½

$$4y + z = 2$$
; $2x + 6y - 2z = 3$; $4x + 8y - 5z = 4$.

UNIT - III

- (a) Show that the set {(2, 1, 4), (1, -1, 2), (3, 1, -2)} form a basis of R³.
 - (b) If $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation defined by T(1, 0, 0, 0) = (1, 1, 1), T(0, 1, 0, 0) = (1, -1, 1), T(0, 0, 1, 0) = (1, 0, 0) and T(0, 0, 0, 1) = (1, 0, 1), then verify that Rank T + Nullity T = dim \mathbb{R}^4 .
- 7. (a) Let T: U → V be invertible linear transformation and T⁻¹: V → U be its inverse. Then show that T⁻¹ is also a linear transformation.
 7½
 - (b) If T₁ and T₂ be two linear operators defined on R² s.t. T₁(x, y) = (x + y, 0) and T₂(x, y) = (-y, x). Find a formula for the operators : 7½
 - (i) T₁T₂
 - (ii) T₂T₁
 - (iii) T_1^2

UNIT - IV

8. (a) Find the eigen values and eigen vectors of the

matrix
$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

(b) Find the values of
$$a$$
, b , c if $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal.

9. (a) Diagonalise the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$$
. 7½

(b) Using Gram-Schmidt orthogonalization process, construct an orthonormal basis of $V_3(R)$ with standard inner product defined on it, given the basis $u_1 = (1, 1, 1)$, $u_2 = (1, -2, 1)$ and $u_3 = (1, 2, 3)$.

https://www.mdustudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

(4)