Roll No.

41251

B. Sc. (Hons.) Maths 4th Semester Examination – May, 2019

SEQUENCES AND SERIES

Paper: BHM241

Time: Three hours]

[Maximum Marks : 60

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 9 (Unit - V) is compulsory. All questions carry equal marks.

UNIT ~ I

- 1. (a) Prove that between two distinct real numbers, there are infinitely many irrational numbers.
 - (b) Prove that A°of a set A is the largest open subset of A.
- 2. (a) Prove that infimum of a set A are also infimum of \overline{A} and contained in \overline{A} as A is bounded below.

P. T. O.

41251

https://www.haryanapapers.com

https://www.haryanapapers.com

(b) State and prove converse of Heine Borel Theorem.

UNIT - II

- 3. (a) By definition, show that the sequence $\left\langle \frac{h^2 + 3h + 5}{2n^2 + 5n + 7} \right\rangle$ converges to $\frac{1}{2}$.
 - (b) Let $\langle a_n \rangle$ be a sequence such that $a_n \neq 0 \ \forall n \in \mathbb{N}$ and $\frac{a_n+1}{a_n} \to \rho$. If $|\rho| < 1$, then $\lim_{n \to \infty} a_n = 0$.
- **4.** (a) Show that the sequence $\langle a_n \rangle$ defined by $a_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2^{n-1}}$ does not converge.

https://www.haryanapapers.com

(b) Discuss the convergence of the following series :

(i)
$$\sum_{n=1}^{\infty} \frac{1}{x^n + x^{-n}}, x > 0$$

(ii)
$$\sum_{n=1}^{\infty} \frac{x^n}{a^n + x^x}$$

UNIT - III

5. Test for convergence of the following series:

(2)

(a) $\frac{x}{2\sqrt{3}} + \frac{x^2}{3\sqrt{4}} + \frac{x^3}{4\sqrt{5}} + \dots$

(b) $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^p}$

(c) $\frac{a}{b} + \frac{a(a+1)}{b(b+1)} + \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$

(a) State and prove Gauss Test for the converge an infinite series.

(b) Discuss the convergence of the following ser

(i)
$$\sum_{n=1}^{\infty} \left(n^{1+\frac{1}{n}} \right)^{-n}$$

(ii)
$$\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{3!} + \dots$$

UNIT - IV

7. (a) Test the convergence and absolute convergence the following series:

(i)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^3}{(n+1)!}$$

(ii)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\sqrt{n^2 - 1 - n} \right)$$

ρ. .

https://www.haryanapapers.com

https://www.haryanapapers.com

https://www.haryanapapers.com

(3)

- (b) Prove that the infinite product $\int_{n=1}^{\infty} \cos \frac{x}{2^n}$ converges to $\frac{\sin x}{x}$, where x is an arbitrary fixed non-zero number.
- (a) Test the convergence a divergence of the series :

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \sin(n\theta + \alpha)$$

(b) State and prove Mertin's theorem.

UNIT - V

(a) (live an example to show that :

$$A^{\circ} \cup B^{B} \neq (A \cup B)^{\circ}$$
.

https://www.haryanapapers.com

-) Find the derived set of $\left\{1 + \frac{1}{2^n} \mid n \in N\right\}$.
- 1 Discuss the boundedness of the sequence:

$$\left\langle \frac{2_n+3}{3_n+4} \right\rangle$$
.

State Logarithmic Test.

State Abel's test in arbitrary series.

Discuss the convergence of the infinite product:

$$\int_{n=2}^{\infty} \left(1 + \frac{(-1)^n}{\sqrt{n}}\right).$$

(4)

https://www.haryanapapers.com