UNIT - IV

8.	(a)	(a) What is full-subtractor? Design a full-adder as	
		implement the same using gates.	8
	(b)	What is a BCD to seven-segment Decoder	?
		Design and implement it.	8
9.	Exp	plain the following:	
	(a)	Code Converters	8
	(b)	Comparators	8

Roll No.

97664

BCA 1st Semester (New) Examination – November, 2017

LOGICAL ORGANIZATION OF COMPUTER - I

Paper: BCA-104

Time: Three Hours] [Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt four questions by selecting one question from each Unit. All questions carry equal marks.

1. (a) What is a multiplexer? Outline its relevance.

 $2 \times 8 = 16$

- (b) What is Unicode? State its relevance.
- (c) What are Demultiplexers? State their importance.
- (d) What are digital signals? Explain.
- (e) What is the smallest and largest integer number represented in a 32-bit computer?

What are Venn Diagrams? (g) Prove x.y'+y.z'+z.x'=x'.y+y'.z+z'.x, algebraically. (h) What are encoders? UNIT - I 2. (a) Which number system is followed in digital computers and why? (b) Find out the values of X, Y and Z in the following: 12 $(108.750)_{10} = (X)_2 = (Y)_8 = (Z)_{16}$ **3.** Explain the following: (a) Error detection and correction codes (b) Character Codes UNIT - II 4. (a) What are De-Morgan's Law? Illustrate. 6 (b) Kush wants to purchase a bicycle. The bicycle must have brakes. He will buy a bicycle that has either a hand-brake or a foot-brake. No bicycle has both types. Write the Boolean equation for buying a bicycle. Implement the same using basic 10 gates.

(2)

97664-7050-(P-4)(Q-9)(17)

	1	O
	(a)	Duality principle 6
	(b)	Canonical forms of Boolean Functions 5
	(c)	Boolean Axioms 5
		UNIT – III
6.	(a)	What are Universal Gates? Why these are named
		so? Justify. 6
	(b)	What do you mean by multilevel NAND and
		NOR circuits ? Illustrate. 5
	(c)	What are AND-OR-INVERT and OR-AND-
		INVERT implementation? Explain. 5
7 .	(a)	What is combinational circuit? What are its
		characteristics? Detail out the procedure for
		design of combinational circuit.
	(b)	Design a combinational circuit that receives 2-bit
		binary input and produces its square at the
		output. 8
		· ·

(3)

97664-7050-(P-4)(Q-9)(17)

P. T. O.

5. Explain the following: